
Hernando Barragán | Interaction Design Institute Ivrea | June 2004

h.barragan@interaction-ivrea.it

 Wiring: Prototyping Physical Interaction Design

Thesis Committee

Massimo Banzi . Associate Professor

Primary advisor

Casey Reas . Visiting Assistant Professor

UCLA Design | Media Arts,

Secondary advisor

Gillian Crampton Smith . Director

Andrew Davidson . Chair of the Academic Programme

Hernando Barragán

0. Abstract

0.1 Problem

Design education and practice increasingly rely on digital technology. For designers to suc-

cessfully enter this domain they need to understand the inherent qualities in the media they

work with, such as electronics and software. Current prototyping tools for electronics and pro-

gramming are mostly targeted to engineering, robotics and technical audiences. They are hard

to learn, and the programming languages are far from useful in contexts outside a specific

technology. Designers need a teaching language and electronics prototyping system that fa-

cilitates and encourages the process of learning, that reduces the struggle with electronics

design and programming, and that are powerful and flexible enough for the needs of Interac-

tion Design.

0.2 What is it

Wiring is both a programming environment and an electronics prototyping input/output board

for exploring the electronic arts and tangible media. It can also be used to teach and learn

computer programming and prototyping with electronics. It illustrates the concept of pro-

gramming with electronics and the physical realm of hardware control which are necessary

to explore physical interaction design and tangible media aspects in the design discipline.

The Wiring software and the hardware designs of the Wiring electronic input/output board will

be freely available for download on the Web. Users will have access to the Wiring electronic in-

Wiring: Prototyping Physical Interaction Design

put/output board as well. The site contains a reference, and a number of short prototypical ex-

amples that explore the media and illustrate the code and the electronics diagrams allowing

users to learn by experimenting with them.

Wiring builds on Processing, the open source programming language developed at the Mas-

sachusetts Institute of Technology Media Lab and Interaction Design Institute Ivrea by Ben

Fry and Casey Reas. People who learn how to program using Processing can instantly move

to program in Wiring and then to other languages or scripting environments like Java, C, C++,

JavaScript, Flash or Director.

While working on their design concepts, users will be able to sketch, test their ideas and pro-

totype them, by writing small programs and downloading them to the input/output board.

The Wiring input/output board is a general purpose electronic system that includes a micro-

controller where the users’ programs will run. It provides digital and analog inputs and out-

puts and functionality that will allow users to interface all kind of sensors and actuators and

program the behaviors needed in their projects.

This project aims to support education not only in the design and art schools but also

in different types of learning environments and different types of practices. It will en-

able users to quickly prototype their ideas and concepts in the physical world, allow-

ing users to concentrate on the quality of their designs, the interaction, ideas, or con-

cepts being illustrated, rather than concentrate on showing that the technology works.

It will contribute to sharing ideas and knowledge with the wider community of interaction

design and in general to others outside this field. Because it builds on the Processing language,

it will take advantage of the existing online community of users around the world and their

collective experience. It also builds on my previous professional experience as engineer artist

and designer.

Hernando Barragán

Wiring: Prototyping Physical Interaction Design

Acknowledgments

This thesis is dedicated to my huge family, (too many to name you all guys), especially to my

grandparents Rafael y Maria, and my grandparents Antonio y Edelmira who both passed away

while I was here.

I am extremely grateful to Casey Reas for his support and encouragement; It’s been an honor

to have him as mentor and friend and a constant source of inspiration and perspective, thank

you. I thank Massimo Banzi for his support. I also thank all the members of the community at

Interaction Design Institute Ivrea past and present for their valuable insights: Gillian Cramp-

ton Smith, Andy Davidson, Bill Verplank, Jan-Christoph Zoels, Stefano Mirti, Reed Kram, Clem-

ens Weisshaar, Edoardo Brambilla, Simona Maschi, Britta Boland, Nathan Shedroff, Molly Write

Steenson, Camille Norment, Durrell Bishop, Anthony Dunne, Fiona Raby, Dag Svanæs, Peppino

Ortoleva. I thank all the IDII community who directly or indirectly contributed to my education

and life in the last two years. Thanks to Linda Norlen and Christian Palino for their support in

the elaboration of this document.

Thanks to Tiberio Hernandez for being my mentor, for his vision and always letting me do

whatever it comes to my mind, Rafael Gomez for sharing his passion for programming and

hardware, and Rodrigo Cardoso for his wisdom.

Thanks to Ben Fry, the Processing development team, Mauricio Giraldo, Brian Dean, Peter Gas-

parik, Alberto Alberton, Pascal Stang, Dan O’Sullivan, Tom Igoe, Michal Rinott, Karmen Frani-

novic, Myriel Milicevic, Maya Lotan and the Internet guys for their support.A big thanks goes to

my class, who have been an amazing experience in my life. I also want to thank the first and

the next generation of students at IDII; it was great to share with you guys.

Very special thanks go to all my friends for being always there.

Contents

0. Abstract

0.1 Problem

0.2 What is it

1. Introduction

1.1. Physical Computing

1.2. Microcontrollers

2. Background

2.1. Learning computer programming

2.2. Learning and prototyping with electronics

2.3. Contributions from the industry

2.4. Contributions from Physical Computing classrooms

3. Concept development

3.1. First Experiment

3

3

3

15

15

16

22

22

24

29

33

35

36

3.2. Second Experiment

3.3. Third Experiment

4. Design and Implementation

4.1. Wiring Software

4.2. Wiring Hardware

4.3. Wiring Web Site

4.4. First users

4.5. Reactive tables (Powered by Wiring)

4.6. Prototyping aids

4.7 Class support material

5. Conclusions and Future Direction

6. References

Apendix A. Wiring I/O Board Circuit Schematics

Apendix B. Wiring I/O Board Layout

41

47

49

49

50

56

57

61

62

64

67

69

74

75

WIRING . HERNANDO BARRAGAN

This chapter gives an overview of related work; prototyping with electronics in

art and design schools in the field known as physical computing. It will introduce

the subject of physical computing in the educational context, then present dif-

ferent projects that address in some way the components involved in this activ-

ity, such as learning computer programming and basic electronics; and discuss

some interesting cases relevant for this investigation.

1.1. Physical Computing

What is physical or tangible computing? Many approaches to this term, and in

general to human computer interaction or tangible user interfaces, have been

and are under development right now. Still in its early stages physical comput-

ing emerges as a space or foundation for exploring the concepts, future and role

of computing in our physical environment. Several people and institutions have

been involved in this movement or so-called phenomenon, sharing a common

basis but differing in their goals, approaches and applications.

Different curriculums have been proposed at the core of different design and

art schools to establish physical computing as something that can be taught

and learned. Such programs empower art and design students with the abili-

ties and skills necessary to respond to the challenge of increasingly pervasive

technology in our society. Physical computing is playing an important role in

the development of contemporary art and design as it relates to the contexts of

electronic media.

1. Introduction

16 WIRING . HERNANDO BARRAGAN

The Interactive Telecommunications Program (ITP) at New York University

(NYU), the Computer Related Design program at the Royal College of Art (RCA)

in London, Parsons School of Design, Human Computer Interaction at Stanford

University, School of Visual Arts (SVA) and Washington University, among oth-

ers, are very interesting sources on this subject. Each of the programs in these

schools is quite different from each other, as is the kind on works produced and

the audiences. As a common basis, the courses introduce students to the basics

of electronics, circuit design, prototyping, sensing technologies, simple micro-

controllers, computer-controlled artifacts, actuators, networked projects, video

tracking and analysis technologies, technical aspects in installations, remote

presence and hacking existing electronic devices and robotics, among others.

Teaching and learning physical computing is not a small task. Appropriate

teaching curriculums have to be developed to integrate activities like computer

programming, basic electronics, and support software and hardware tools with

the educational context. Since most of the students in these courses come from

art, design and humanities-related disciplines, the classes should be targeted to

people with no previous technical or engineering skills.

1.2. Microcontrollers

Microcontrollers are a kind of small computer device that addresses some of the

difficulties involved in prototyping with electronics by introducing the concept

of programming into it. The same unit can behave in different ways, just by doing

or modifying a software program to adapt it to a specific need or purpose. Com-

puter programming is completely independent from electronics or a program-

ming language in particular. The programming languages available to program

microcontrollers range from native versions of assemblers, C, and BASIC, but

there are others that can be programmed in most popular programming lan-

guages like Java or Logo. All of these programming languages have their weak-

nesses and strengths when it comes to ease of use, functionality, development

environments and interfaces for development. In most cases they are attached

to the very specifics of a technology, making it difficult to learn the basics of

programming and electronics at the same time. For this reason, it is a daunt-

ing for a designer or artist to know where to turn when building a prototype or

developing an idea.

Software tools are built upon layers of abstraction from assemblers to program-

ming languages or graphical user interfaces, which were the result of decisions

made by many programmers and electronic engineers. As a result it is unlikely

that appropriate tools for designers might come out from the technology indus-

try, but perhaps allowing designers to create or participate or shape their own

design tools.

From the point of view of a computer user with little or no skill in programming,

who wants to create interactive software [and products] the current technological

development has created the following situation:

The simplifications and abstractions made by the tool designers make it practi-

cally impossible to experiment with and implement many interactive solutions

that are technically possible.

The user’s image of the design-space concerning interaction is fragmented and

incomplete. It is shaped by the tools they have been using and by the solutions

they have seen. Consequently, many solutions that are technically possible are

“unimaginable” to most interaction designers. (Svanæs 3)

Nowadays there is a wide range of popular, powerful, and relatively inexpensive

microcontrollers available on the market for commercial, educational, hobbyist

and entertainment markets However, the knowledge of hardware and program-

ming required to put them into production is quite vast and difficult to grasp for

audiences other than the targeted audiences of engineering, intermediate and

advanced users.

Programming language, functionality, cost, ease of use, availability of free soft-

ware and examples, and documentation are all factors that must be taken into

consideration when choosing the right microcontroller.

The microcontroller’s functionality varies from basic logic control up to fully

functioning computers with wireless Internet or network access, RF communica-

tion, Bluetooth, GPS capabilities, and more complex systems. Many companies

like Motorola, Microchip, Parallax, Texas Instruments, Rabbit Semiconductors,

ATMEL, UBICOM, Dallas Semiconductors etc. have a vast selection of program-

mable devices, and in some cases a single company offers hundreds of families

of microcontrollers.

40-Pins PIC Microcontroller

Microchip Inc.

1

18 WIRING . HERNANDO BARRAGAN

Signals can also be of analog nature. Many physical phenomena manifest in this

way, like measuring light intensity, temperature, sound or position, where there

is a range of intermediate values that can be measured. In this case a pin in a

microcontroller can be used as what is called an analog input or an analog-to-

digital converter (ADC). In an ADC a range of analog values is converted to a

range of numbers, depending on the precision of the ADC, for instance an 8-bit

precision ADC can differentiate between 256 possible values because that’s the

maximum decimal number that can be represented with 8 bits; others use 10-bit

precision for conversion, which can generate values between 0 and 1024. When

an analog pin reads 0 volts it returns a 0 and when it reads 5 volts, returns the

value 1024, with possibility of all the values in between the range: 2.5 volts re-

turns 512 and so on.

Microcontrollers also have analog outputs that work in a way very similar to

the analog inputs, but technically different. Usually the analog output is done

through a process called Pulse Width Modulation (PWM) that consists of generat-

ing a pulse train in a normal digital output. This is equivalent to turning the pin

ON and OFF very quickly, as it is done in dimmers for lamps or motor speed con-

trollers so the lamp or motor is not ON all the time but only part of it, reducing its

actual performance time. Real analog outputs can also be found; they are known

as a Digital-to-Analog Converter (DAC), again depending on the precision with

which they can convert a digital number into a voltage value on a physical pin.

There are audiences from diverse disciplines that are potentially in-
terested in design, prototyping and programming in the context of
electronic media, and would like a way that facilitates and encour-
ages their process and allows them to test and come up with new
ideas and possibilities. However, these audiences may not have the
needed programming, electronics and math skills. A system oriented
towards these audiences is needed, to allow programming and pro-
totyping with electronics. Such a system needs to facilitate learning
concepts that can be mapped and useful in different contexts.

Explained in a very simple way, a microcontroller is an electronic device with a

set of Input and Output pins. Physically these pins may look like real pins, or can

be just connectors of some kind that other devices can be plugged to, depending

on the microcontroller; there are some that are single units and others that are a

complete electronic board with access to the pins through connectors.

Depending on the microcontroller’s functionality, the pins can be inputs or out-

puts, so they can be used to receive and send signals. The signals can be discrete,

in the case of digital binary signals where the possible values are logical 0 (LOW)

or logical 1 (HIGH). These values (HIGH or LOW) are reflected in changes in volt-

age, let’s say LOW is 0 volts, and HIGH are 5 volts.

digitalRead(0)

digital I/O pin 0

HIGH

5-volt (HIGH signal)

digitalRead(0)

digital I/O pin 0

LOW

0-volt (LOW signal)

digitalWrite(0,HIGH)

digital I/O pin 0

5-volt (HIGH signal)

digitalWrite(0, LOW)

digital I/O pin 0

0-volt (LOW signal)

AVR atmega128 microcontrolelr

Atmel Corp.

2

80-Pin PIC Microcontroller

Microchip Inc.

3

Reading the value of a digital input pin.

4

Setting the value of a digital output pin

5

20 WIRING . HERNANDO BARRAGAN

Some microcontrollers provide access to individual pins or to groups of pins at

the same time. Groups of pins are known as Ports. For example, an 8-bit port is a

set of 8 pins. The microcontroller provides functionality to write a value to a port,

and will set the values of the individual pins accordingly. This is useful to control

special kinds of devices or write data in parallel.

Microcontrollers also have timing abilities, usually a few timers that can be

used in different ways to measure time lapses, trigger events, synchronize func-

tions, etc.

Microcontrollers have communication capabilities, usually with serial ports, the

same kind of serial ports that are available in most computers. In this way they

can connect and communicate with other devices using the well-known serial

protocols. In many cases the serial ports are used for both programming the mi-

crocontroller and for communication purposes.

In general, programming a microcontroller is a process with two components.

One happens in a PC or host computer, and the other in the microcontroller it-

self. On the PC there is what is called a programming development environment,

which generally includes an editor for the user to type its programs, and include

the functionality to compile and generate the necessary files that are under-

standable by the microcontroller. When the user code is compiled, it is converted

to machine language, a language that is understandable by the microcontroller

and written to what is known as object binary file. This binary file can be down-

loaded to the microcontroller and then executed by it. To download the file to

the microcontroller, a special setup is needed, usually done through a serial port,

so a physical connection between the microcontroller and the host computer is

done using the serial port. At this point the microcontroller can be disconnected

from the host computer, since the program is downloaded to the microcontroller;

it will stay in the microcontroller memory and will be executed constantly. Every

time the microcontroller is turned on, it will execute this program.

Microcontrollers, at least the kind of microcontrollers mentioned in this investi-

gation can be re-programmed as needed.

portWrite(0,0)

0

0

0

0

0

0

0

0

portWrite(0,255)

1

1

1

1

1

1

1

1

portRead(0)

0

0

0

0

0

1

0

1

portRead(0)

0

0

0

0

1

1

1

1
15 3

p
o

rt
0

p
o

rt
0

p
o

rt
0

p
o

rt
0

User's
Program

System
libraries

Compiler

MicrocontrollerPC Programming Environment

Linker Downloader
Binary

file

Port reading and writing

6

Microcontroller’s programming process

7

22 WIRING . HERNANDO BARRAGAN

DBN is not a general purpose programming language like C or Java, but was de-

signed to familiarize people with the basic concepts of computational media.

Sponsored by private institutions, Alan Kay and some colleagues developed

Squeak. It is a program designed for children to express ideas about math and

science, and to enhance children’s learning in these areas. Users can build com-

putational systems with it.

Boxer is under development at UC Berkeley by Andrea A. diSessa and Edward

H. Lay and some parts are copyrighted by MIT. It is a computational medium

based on a literacy model, including text and hypertext processing, dynamic and

interactive graphics, video, personal data management, (including e-mail and

networking) and programming.

The Visual Machine Model created in the MIT Media Laboratory at the Aesthetics

and Computation Group by Jared Shiffman, emphasizes the need for clear visual

representations of both machines and materials, and the importance of continu-

ity. It presents a new paradigm for the design of visual programming languages,

with the goal of making computation visible and, in turn, more accessible. Five

dynamic visual programming languages were designed and implemented ac-

cording to the specification of the Visual Machine Model. (Shiffman, 1999)

Processing, created by Ben Fry and Casey Reas of the Aesthetics + Computation

Group at the MIT Media Laboratory and Interaction Design Institute Ivrea is a

learning program and environment for creating systems in a subset of the JAVA

programming language, with real time three-dimensional graphics, color, input/

output and other features that DBN lacked.

The spirit of Processing is to act as an electronic sketchbook where people can

learn the fundamentals of computer programming within the context of the

electronic arts (Reas, 2003).

Both Design By Numbers, and Processing are systems that introduce the basic

ideas of computer programming within the context of visual design. Form ele-

ments are drawn using computational concepts like iteration, repetition, vari-

ables, and conditional statements, as well as structural elements like functions

and classes. They are powerful educational tools designed for adults, allowing

users to create programs that manifest mainly on the computer screen. With Pro-

cessing, users can create beautiful graphics that are interactive and dynamic.

Academic and private companies have created several software and hardware

systems for education, to provide a solution for teaching and learning computer

programming and prototyping with electronics. I will present a brief description

of some of these projects.

2.1. Learning computer programming

Logo was developed by a team from MIT, and was originally designed to intro-

duce children to programming concepts, to develop better thinking skills that

could be transferred to other contexts. Logo was supposed to be a language for

the teaching of mathematical ideas to children through computer programming.

It was intended to be easy to learn, easy to use, easy to read, but also powerful

and able to cope with complex problems. It was then discovered that Logo ex-

tended far beyond mathematical areas. The man who became the spokesperson

for this language was Seymour Papert.

Focusing on the aesthetic qualities of computation and computational media

design, Professor John Maeda and students in the Aesthetics + Computation

Group at the MIT Media Laboratory created Design by Numbers (DBN), which is

both a programming environment and a language. The environment provides a

unified space for writing and running programs and the language introduces the

basic ideas of computer programming within the context of drawing. Visual ele-

ments such as dot, line, and field are combined with the computational ideas of

variables and conditional statements to generate images. (Maeda, 1999)

2. Background

Microworlds Logo

Microworlds, 2004

8

DBN

MIT Media Lab, 1999

9

Squeak.

10

Turing, Interactive visual representa-
tion of Alan Turing’s machine.

Jared Schiffman, 2000

11

Processing

Ben Fry, Casey Reas 2004

12

24 WIRING . HERNANDO BARRAGAN

A number of workshops have been taught using Processing, refining methodolo-

gies and teaching curriculums, making the concepts of visuals and interaction to

emerge in the process of learning computer programming. WorkWorkshops also

facilitated the project’s communication, impact and further development.

2.2. Learning and prototyping with electronics

In the projects described above, the users learn the basics of computer program-

ming by creating applications that manifest on the screen, but can not extend

these concepts into the physical world, which is necessary to explore physical

interaction design and tangible media aspect. Most of the systems used in teach-

ing and learning physical computing were never intended for education. They

originated from the electronics and radio hobbyists, the robot design field and

robotics applications. These introduced the concept of “Kits”, semi-complete sets

that include basic electronic components as a common basis for beginners to

start their explorations.

To build and design robots, Professor Fred G. Martin at the MIT Media Laboratory,

designed several systems.

The Mini Board designed at MIT Media Laboratory by the Professor Martin and

his colleagues was a single board computer optimized for controlling small DC

motors and receiving data from various sensors, initially intended for control-

ling small mobile robots. It communicates with a desktop computer over a se-

rial port, making it suitable for desktop computer-based control as well. It was

designed in 1990, and since then several copies of the board were printed out

and distributed.

In 1989 Professor Martin designed the 6.270 Board which was very complex

board compared to the Mini Board. The project became a class called 6.270: The

MIT LEGO Robot Design Competition, intended for students to create fully au-

tonomous robots. This class is today a student-run activity where past students

become future organizers.

Students received a Kit containing LEGO parts, electronics, sensors, batteries,

motors and wire; they had a month to design, build and debug an autonomous

contest robot.

Professor Martin also designed the Handyboard, which was more powerful than

the Mini Board but less complex than the 6.270 board, making it a more useful

overall package. It was designed from readily available components, fitting in a

commercial plastic enclosure and running from a single rechargeable battery,

it also uses fewer components. The Handy Board was the first microcontroller I

ever used for my own art projects. Within the expansion board it is a powerful

computer, and it is based on the Motorola 68HC11 microcontroller.

In order to program it, there are free assembler compilers available as well as

commercial C compilers.

This kit is compatible with the Interactive C, which is a programming environ-

ment created for the MIT LEGO Robot Design project. It is a multitasking C lan-

guage compiler originally created for students.

The Handyboard is a very interesting case, because it was designed with the

robot design in mind. It was intended for engineering students and an audience

with a programming and technical background, and was one of the milestones

in robotics and hobbyists activities. There was also a step in the direction of

providing both a hardware and software integrated solution for its audience. An-

other important aspect is that it was distributed to a wider audience than that of

research labs. It was built, marketed and distributed by different parties, with all

the necessary documentation to build it freely available and released to public.

The companion software was also distributed freely and downloadable from the

web, even if the user didn’t purchase the board from the distributor. The software

provided support for Windows and Macintosh systems.

At the hardware level it provided direct connections to motors, servos, sensors; it

was designed to be a plug-in platform. The downside was in the cost since it was

a relatively expensive device.

The Interactive C programming language is a subset of the C programming lan-

guage, with a simplified syntax and multitasking capabilities. The system pro-

vided libraries that made certain common activities like the use of motors and

servos very simple, but complex elements remained in the language, making it

difficult to be used as the first programming language for non-engineer user to

learn. Because it also inherited many low level commands and technical ele-

ments from the C language, it was very difficult for non-technical audiences

to grasp, but very interesting for those who already knew how to program or

The Miniboard

Fred Martin, 1990

13

6.270 Board

Fred Martin, 1989

14 6.270 Class

MIT

15

The Handyboard

Fred Martin. 1999

16

26 WIRING . HERNANDO BARRAGAN

already knew C ,and didn’t want to go into the intricacies of low-level languages

like assembler.

The C programming language is the most widely used programming language

since it was devised in the 70s. After some years of development it was standard-

ized by the ANSI X3J11 committee. In the beginning it was associated with the

UNIX operating system, but later it expanded to all available systems becoming

the most spread programming language ever. Its abstractions lie in a sufficiently

high level that, with little effort, portability between machines can be achieved.

On the other hand the relationship between arrays and pointers, the way declara-

tion syntax mimics expression syntax, memory management and in general some

syntax particularities often serve as a stumbling block for beginners. Its success

lies in its portability, it remains as a simple and small language. It was created as

a tool to make useful programs that do useful things, covering the needs of many

programmers without trying to supply too much things. It displaced languages

like assembler while maintaining an abstraction level of machines and fluent

enough to describe algorithms and interactions in a wide range of environments.

(D. Ritchie 1993)

People at the Lifelong Kindergarten Group (LLK) at the MIT Media Laboratory are

working on the development of educational tools for learning concepts about

hardware and computation. Over the past decade, LLK worked on the develop-

ment of Programmable Bricks.

The Programmable Brick is a tiny portable computer embedded into a LEGO

brick for kids to build into their LEGO systems. Kids can create robots or stand-

alone projects, not only structures and mechanisms, but also behaviors. The aim

is to teach kids concepts about engineering design and technology by bringing

computation to their physical environment. Programmable Bricks have expand-

ed into two areas. On the commercial side, they evolved into something called

the RCX Brick that became the foundation for LEGO Mindstorms, a commercially

available set of toys that lets users build robots and computational projects us-

ing LEGO blocks.

The programmable evolve into Crickets, which are tiny computers powered by

batteries that can communicate with each other by infrared light. Each can oper-

ate two motors and receive information from two sensors. They are programmed

in a dialect of the LOGO language. An evolution of crickets is available com-

mercially as the Handy Cricket made by Fred Martin and his colleagues. A set of

sensors and actuators are marketed with this system, that interfaces with the

regular LEGO brick and the Programmable bricks, but which make it difficult or

impossible to connect electronic devices that are not part of the set.

LogoBlocks is the graphic programming environment that lets the user create

iconic programs to control a Programmable Brick. To create programs, you just

drag blocks from a palette and snap them together on a canvas.

The GoGo Board is a simple I/O interface developed at the Future of Learning

Group at the MIT Media Lab by Arnan (Roger) Sipitakiat. It is used in projects that

need a simple interface between the computer and sensors, very useful for proj-

ects that need to control simple actuators. It uses Microworlds Logo program-

ming language and it works only when it is connected to the computer.

The programmable bricks, Crickets Logo Board and GoGo board share are all tar-

geted to children’s education. They are toys that include mechanical parts, and

the development environments are based in the concept of visual programming

with the Logo programming language. They are very limited systems for activi-

ties involved in physical computing, but lack the flexibility required for general

purpose applications.

Nylon is a system created at the Aesthetics + Computation Group at the MIT Me-

dia Lab by Megan Galbraith, Justin Manor and Simon Greenwold. It is a program-

ming environment and language called Nylon that lets users write the control-

ling code for programmable devices in addition to developing dynamic graphics.

Nylon builds off Design by Numbers (DBN), in that it was designed for artists and

visual designers. Nylon and LogoBlocks are each very powerful and are used in a

variety of educational settings (Galbraith, 2003).

The Nylon system is based on the Netmedia’s BasicX microcontroller; the pro-

gramming environment uses the Nylon language.

The Nylon system has an interesting design in terms of its form. It comes cov-

ered on one side with a board made of nylon (which gives it its name). On one

side the name is embedded in plastic on the board; on the other side it is covered

by a breadboard where people can quickly prototype things just by adding and

connecting wires from the microcontroller terminal connectors to the bread-

board. No internal components are in contact with the exterior, but it can be

taken apart as needed. Because of the design, it can easily be embedded into

22. Nylon

MIT Media Lab, 2002

MIT Programmable Brick

LLK MIT Media Lab

17

LEGO RCX Programmable Brick

LEGO Mindstorms, 2002

18

LEGO Rotational sensor

LEGO Mindstorms, 2000

19

The Handycricket

Fred Martin, 2003

20

The GoGo Board

Arnan (Roger) Sipitakiat, 2002

21

Nylon

MIT Media Lab, 2002

22

Nylon (inside)

23

28 WIRING . HERNANDO BARRAGAN

different things, like clothes, pockets etc. making it an interesting option for dif-

ferent prototyping situations. It also has a battery connector inside, so a 9-volt

battery can be plugged inside the package with no extra or bulky space needed.

The model is very interesting as it is a clear attempt to make a self-contained

unit for both programming and prototyping with electronics, which comes close

to being true desirable environment for a school. The programming environment

offered support exclusively for the windows operating system. Internally the

Nylon language was translated into Netmedia’s flavor of the BASIC language

and then downloaded to the device using the proprietary BasicX programming

tools which are only available for the Windows operating system. This limited

the possibilities for expansion for the Nylon language and the system itself, as

well as the possibilities for further distribution. Because it was mostly targeted

to create graphic applications within the Hotpants device, the Nylon program-

ming language included commands for drawing basic form elements like lines,

dots, circles, etc.

The Hotpants device created in the Aesthetics + Computation Group at the MIT

Media Lab by Simon Greenwold, is a 10 X 14 LED array display device for the

Nylon system . It renders graphic commands sent to it by the Nylon base unit.

Hotpants is powered by a PIC microcontroller, making it capable of considerable

onboard processing. All necessary information to build Hotpants is available for

public use from its web site. The necessary tools to build it are freely available

as well. It can be used independently from the Nylon system, making it possible

to connect to other devices by implementing the necessary commands. While

the Hotpants display was available to the public, the Nylon board was not. It was

only used at the MIT Media Lab in diverse workshops and classes.

Zuf is a programming system created at the Aesthetics + Computation Group at

the MIT Media Lab by Megan Galbraith for controlling small embedded devices

and microcontrollers using fuzzy logic. It was designed and targeted for fashion

designers interested in building computational garments. It is a web-based de-

velopment environment, and visual programming oriented. At the moment it is

not completely developed or available to the public, but it is a very interesting

concept that tries to provide a complete tool for fashion design audiences in both

hardware and software terms and take advantage of the web as a programming

environment to make it platform independent and widely available.

AvrMini is an application/development board designed by Pascal Stang at Santa

Clara University that is used for class exercises and workshops. It is general-pur-

pose and provides access to all the microcontroller’s ports with headers. It allows

one to rapidly prototype and test new applications for the AVR microcontroller.

It is a very affordable and simple system, generic enough to be used for different

purposes and start up testing of prototypes. Pascal developed a series of librar-

ies in C that simplify common use tasks. It is a very interesting system and it is

completely based on GNU tools for its programming. Because the programming

language is C it requires a good understanding of C and UNIX to use the avail-

able tools. This has been widely used in the Human Computer Interaction Design

program at Stanford University by Professor Bill Verplank.

Programma2003 is a prototyping board created by Massimo Banzi at Interaction

Design Institute Ivrea; currently it is used to build simple interactive artifacts

and as a teaching tool for the Physical Interaction Design classes at the Interac-

tion Design Institute Ivrea. It uses the Open Source JAL programming language

and the popular PIC16F876 Microchip microcontroller. At the moment the JAL

language is very limited and it is oriented to engineering audiences. The support

is limited as well; since the only source of information is its own creator, making

it difficult and cryptic to be used as a teaching language and to illustrate the con-

cepts of programming to audiences with no previous experience in hardware or

programming. It is an attempt to offer a free platform, based on freely available

tools for the Windows, Mac and Linux operating systems.

2.3. Contributions from the industry

There are companies that have targeted their products to intermediate and be-

ginner level users, and have invested time and effort in developing educational

material as well as support and community. I will describe some systems with

this orientation.

Multiple factors are involved in choosing the right platform for an application

that is general enough to respond to the necessities in diverse kinds of projects.

Price, power, memory, ease of use, freely available tools, support, programming

languages, and which operating systems are supported are all very important to

the choice.

Parallax BasicStamp is a very popular microcontroller. There is a vast source of

information, code, examples, experiments, support, user groups and material

available. It is sold as part of basic kits for beginners and education or as a stand-

Hotpants

Simon Greenwold, 2002

24

AvrMini

Pascal Stang, 2002

25

Programma2003

Massimo Banzi, 2003

26

Parallax BasicStamp

Parallax Inc, 2000.

27

30 WIRING . HERNANDO BARRAGAN

alone product for experienced users as well. The kits include a board, microcon-

troller, sensors, motors, and complementary electronic devices and companion

book to develop experiments.

Netmedia BasicX is NetMedia’s family of rapid development micro-controllers.

These products include the BasicX-01 Developer Station and chip, and the Ba-

sicX-24 Developer Station and microcontroller chip programmed in NetMedia’s

version of the BASIC Language. Around it, the company developed a set of devices

like LCDs and servo motor controller boards and there is also a vast number of re-

sources available on-line, as well as user groups, examples and documentation.

Both BasicStamps and BasicX include an integrated development environment

(IDE) only available on the Windows operating system. These systems are very

expensive and fragile for educational purposes, but the availability of materials

and support online make of them an excellent choice for beginners and hobby-

ists, and the classrooms of some schools. The programming environment is not

freely available, as users have to purchase it (included) with the hardware. Both

BasicStamps and BasicX are programmed in variations of the BASIC program-

ming language which nowadays is far from being a widely used language and

lacks the structure, elegance and level of abstraction of languages like C or JAVA.

This makes it difficult to be used in other environments and to create reusable

or portable software. It is clearly not the right option for teaching and learning

the concepts of programming.

Microchip PICs are a very popular family of microcontrollers. Hundreds of mod-

els are available for different needs, as well as on-line support materials, ex-

amples, and documentation. They can be programmed in a variety of languages,

from assembler, C and BASIC, as well as open source languages like JAL. The low

price makes them a very interesting option for prototypes, but unlike the BasicX

or BasicStamps which are products almost ready to use, they need some special

initial setup for both hardware and software. They require hardware initializa-

tion programmers, which are hardware blocks designed to download programs

to the device to start it operating. This needs a deep understanding of technical

concepts and processes. This family of microcontrollers became very popular

due to amateur radio and hacking communities, as they were widely used and

spread in the hacking of satellite signals.

Atmel AVR and ARM microcontrollers are both very inexpensive and powerful,

but both have a large source of on-line resources, examples and documentation;

and a variety of programming languages. There is a free C (GCC) compiler for

these systems, as well as commercial tools to program them. Both are available

as standalone components, but also embedded in many different kits offered

by different companies. Both are targeted to intermediate and advanced users

who have a good knowledge of hardware and programming, so they have been

widely used in engineering schools, but are not very popular in art and design

educational environments.

Systronix Javastamp is a microcontroller based on the Ajile family of microcon-

trollers. These are programmed in the Java language, and recently have started

to be used in engineering schools. There is a variety of kits available around this

product: TStik, JStik, JCX, JStamp, JSimm, JDroid, and JRealTime, depending in

the user’s needs and budget, but in general they are expensive devices, and dif-

ficult to use for beginners or non-technical users, due to the intricacies of Java

programming and the offered set of instructions.

An integrated programming development environment is provided with the Kits

and Java programs can be compiled with any Java compiler but the linking and

download into the chip can only be made through using the proprietary Inte-

grated Development Environment (IDE) software which is not freely available or

distributable and is included with the purchased device.

Dallas Semiconductors TINI is a system that provides the possibility to design

hardware devices able to connect to networks or the internet. It is mostly de-

signed to use 1-wire interface products (sensors and actuators), making it dif-

ficult to use with the simple, cheap and widely available ones. There is an evalu-

ation board available for testing and development and it is programmed in the

Java language. Users can use standard SUN Java development tools or the ones

of their choice. This system is pretty much a computer, with web server, serial

port, Ethernet port and an operating system. It is a very interesting option for

networked and advanced projects, but despite the price, additional circuitry is

necessary in order to interface it with regular components, so is not the best

option if used in simple applications or in a classroom by beginners or non-tech-

nical users. Once it is installed, it can be programmed from different platforms

through the network interface.

Parallax Javelin Stamp is the same size package and electric configuration as the

BasicStamp. It is programmed in the Java programming language and it is based

in the Ubicom microcontrollers. Online community and support are also avail-

Netmedia BasicX-24

Netmedia, 2001

28

Systronix JStamp

Systronix, 2002

29

Dallas TINI

Dallas Semiconductors, 2001

30

Parallax Javelin Stamp

Parallax Inc., 2003

31

32 WIRING . HERNANDO BARRAGAN

able and a simpler programming and wiring model than the Dallas TINI micro-

controller makes it better for beginners, but it is difficult for them when it comes

to the programming. It is possible to use different Java compilers to compile the

Java code but as the Systronix JStamp it is necessary to use the proprietary IDE

to link and download the compiled program into the chip. Kits are available for

this microcontroller for beginners, but it is also possible to get it as a single unit.

There are no free software tools for this platform.

Makingthing’s Teleo is a modular set of components for building things with

electronics. It is a system designed to connect modules that add functionality to

the projects through a 4-wire interface peer-to-peer network. It can be interfaced

to the Max/MSP software, as they provide objects to add its functionality to the

MAX software. The modules are based on the PIC 18 family of microcontrollers;

it provides MOSFET switches, which are devices able to switch larger currents

and voltages than the microcontroller can by itself. It is designed to span me-

chanical hardware and multiple applications. The system is very expensive for

teaching purposes, and also the MAX software must be purchased to program it

in a graphical way. The Teleo system uses a very interesting model of modular

architecture so modules can be added and interconnected as necessary.

The Infusion I-CubeX Digitizer is a device that translates information into MIDI.

People can map the MIDI messages of their choice, controlling their own param-

eters. It is possible to connect up to 32 controllers. A turn knob can replace the

mouse, a light can act as a mod wheel, a touch triggers samples, the temperature

controls the volume, etc. It is a black box with inputs and outputs that can con-

nect to MAX/MSP software. It is a very expensive device, and around it, Infusion

sells a wide range of very expensive sensors and actuators ready to connect to

the box. The price makes it very difficult to deploy in a school, and it is more ori-

ented to professionals who are interested in MIDI interfacing for performances,

with no need of complex electronics knowledge.

Pond Electronics designed a board based on the PIC16F876, as well as on the

BasicStamp microcontrollers. They also designed a series of interface boards

for these systems, providing a standard PCB format and a stackable I/O bus in-

terface, which is very interesting for expanding hardware systems on demand.

2.4. Contributions from Physical

Finally I will mention the contributions of individuals and schools to the physical

computing and electronics prototyping community. Many people have amazing

web sites full of information, sample code, diagrams, documented experiences,

recommendations and step-by-step guides. I will reference some of these people

and their web sites, as they are relevant for this research.

Durrel Bishop’s work at the Royal College of Art and IDEO, ideas and methodolo-

gies, have been extremely influential in the development of physical or tangible

computing. He is very interested in designing electronic objects that are self-de-

scriptive of their behavior and how to augment non-electronic objects by giving

them new properties.

Dag Svanaes has done research on the nature of interaction as well as in de-

signing teaching curriculums and tools for teaching interaction designers with

analysis from very different perspectives; his work has been very influential in

the interaction design community. He designed software tools for designers to

prototype graphical user interfaces by drawing with pixels with inherent behav-

ior: Interactive Pixels.

The Interactive Telecommunications Program (ITP) at New York University

(NYU) has been extremely influential in physical computing. It started with Dan

O’Sullivan’s Physical Computing class, and has been involved other people as it

have been growing in the last few years. Dan’s home page, as well as Tom Igoe’s

on Physical Computing (A Hands-on How-to Guide for Artists), are well known

resources on the internet. The amount of available material and references in

their web site is quite considerable. The information available covers a vast range

of topics, like doing basic electronics, programming, serial communication, video

, MIDI, hacks, tutorials, guides for interfacing commercial and free software and

hardware and software libraries made by them and their contributors to pro-

vide connection between different technologies and solutions. All this targeted

to support artists taking the physical computing class. Bill Verplank at Stanford

University has been also very influential in the field with his individual work

and research as well with the Human Computer Interaction class. He taught the

Physical Interaction Design class at Interaction Design Institute Ivrea in collabo-

ration with Massimo Banzi, who also leads physical computing workshops for

students in schools in Italy.

Computing classrooms

Makingthings Teleo

Makingthings, 2003

32

Infusion I-CubeX

Infusion Systems, 2001

33

Pond PIC Ultraflash Board

Pond Electronics, 2003

34

34 WIRING . HERNANDO BARRAGAN

SenseLab at UCLA, the Electronics Laboratory for the UCLA Design | Media Arts

Department, is an active source of resources for learning to prototype with elec-

tronics, and knowledge dissemination and sharing.

Most teachers have chosen a commercial platform, commonly BasicStamp and

BasicX microcontrollers. This decision was driven by convenience, availability of

materials, support, easy of use and basic features, rather than appropriateness

to a particular teaching programming or concepts in basic electronics.

It is well-known from the experience in the physical computing classes that stu-

dents, especially those coming from non technological disciplines, become at-

tached to the platform they learn from and continue using it. Because these

students don’t have technical or programming backgrounds, they invest time

and effort in learning how to use and program these devices; commercial prod-

ucts that are not meant to teach or illustrate the concepts behind programming

or electronics. The structure and tools provided are attached to specifics of a

technology, making it very difficult for students migrate to others, when the one

at hand is not the most appropriate solution for their explorations. If these audi-

ences are willing to invest resources in learning such things, it makes sense for

them to learn concepts that can be used and mapped in different environments

and technologies, rather than learning the specifics and intricacies of a product.

Another important consideration for schools and students is the availability of

these tools for public use and distribution, at least in academic environments

and applications.

When appropriate, it is necessary to give students real computing skills, not only

proprietary software “directions for use.” Consequently, they should get unre-

stricted access to the source code, modify or adapt it to their own needs, and thus

improve the applications they use or develop.

Free Software is particularly performing and secure for communication, a priority

at school for Internet access and E-mail. Free Software allows remote servicing,

a necessity for its deployment in large schools. Free Software allows software

perennity as there is no necessity to buy the last software releases to obtain an

(eventual) improvement. Updates can be immediately developed (so users don’t

depend on editor goodwill) and shared with other users worldwide.

Knowledge is universal, Free Software too. In Education, means are more limited

than in other sectors, because they have to be employed on a large scale. It’s more

relevant to pay grey matter (e.g. help for projects conception, personal and educa-

tional training) or extra devices than to pay proprietary licenses. (Free Software

Foundation 2003)

36 WIRING . HERNANDO BARRAGAN

3. Concept development

I had the opportunity to collaborate with Ben Fry and Casey Reas as part of the

Processing development team. I also use Processing on my personal activities

and as a teaching platform for teaching an Introduction to design for electronic

media at the University of Los Andes in Bogotá, and have also taught diverse

Processing workshops in different parts of the world.

Processing, as a subset on the Java language, brings to users an application inter-

face independent from the technology in which it is used, maintaining a level of

abstraction that allow users to learn the basics of computer programming and

focus on their projects rather than in technical issues or the technology speci-

ficities of a platform. The Java programming language offers a syntax which is

very similar to C, C++, Javascript or Flash Actionscript, making possible to build

programs and algorithms that can be easily translated to different languages

and environments. This makes of Processing a very interesting tool for teaching

and learning computer programming.

Large distinctions between Processing and Java are the Processing graphics li-

brary and a simplified programming style that doesn’t require users to under-

stand more advanced concepts like classes, objects, or animation and double-

buffering (while still making them accessible for advanced users). Such technical

details must be specifically programmed in Java, but are integrated into Process-

ing, making programs shorter and easier to read. (Reas, Fry, 2003)

With Processing there is a community of 5000+ artists, designers and program-

mers around the globe, as well a group of educators, using Processing in their

teaching curriculums in art and design schools. I found inspiring and of great

value to build on this work. A large number of workshops have been taught

around the globe, allowing the development team to gain the experience that

permitted the refining of the teaching materials and curriculums, and collecting

feedback on the API and environment for further development. How could I ex-

tend this experience to hardware programming and prototyping with electron-

ics? I started to explore a number of technological alternatives trying to find the

most appropriate ones.

To start the explorations, I conducted a series of experiments with different tech-

nologies guided by intuition, excitement and a hands-on approach. At the same

time, looking into the kind of applications where microcontrollers are used, I

tried to identify the basic features of a desirable system. After long discussions

and thoughts I decided to call my system Wiring. The following are my experi-

ments with different technologies that led to it.

3.1. First Experiment

Based on my own experience and other’s works I started to think of what could

be the basic desirable Application Programming Interface (API), which is the set

of commands or instructions available to users in a programming environment

to create their own programs.

Processing compiles the user programs (code), which is a subset of the Java lan-

guage, and produces an application. By pressing the play button, the resultant

application can be seen manifested on the screen, and it can respond to differ-

ent input devices connected to the computer. Another possibility is to export

the user’s program to an applet, which is an application that can run inside a

web browser as part of a web page. Processing generates the necessary files to

post the user’s program code and the application to the web, including the basic

HTML document.

The idea was to generate an API as close as possible to Processing, at least in the

basic set of commands, maintaining the concepts and coherence used in Process-

ing, to create a new set of commands to support Wiring. Because of this, the Wir-

ing language could be immediately used by the existing Processing community.

As my first experiment I naturally started to look at Java programmed devices, if

there are not so many, I found some interesting devices to analyze.

I concentrate in studying 2 cases: the Parallax JavelinStamp, and The Dallas

Semiconductor’s TINI Board. I contacted Dallas Semiconductors and Parallax

Inc. explaining the purpose of my project, and ask for their possible collabora-

tion. Dallas Semiconductors arranged shipping of a TINI microcontroller as well

as the socket board, with discount from the retail price. Parallax Inc. also offered

discount and assistance in getting one of their devices.

38 WIRING . HERNANDO BARRAGAN

As a technology enthusiast I found the Dallas TINI board very interesting, its

capabilities to connect to the network are quite amazing. It is a very powerful

microcontroller, almost a small computer. Users can run a web server, and can

also connect to it from the network; it can also be connected to the computer’s

serial port. Once it is up and running, the users can modify their programs and

then they can be sent to the board via FTP.

The board is mostly designed to be interfaced with one-wire devices, which are

a set of sensors and actuators that operate with literally one-wire connection

and use a special protocol for that—but I found that connecting an LED and to

make it blink is quite difficult—and this usually is the first exercise for interac-

tion design students.

The TINI microcontroller has a Java API very similar to the standard Java, with

additional instructions to support its functionality. It uses standard Java classes,

which are basically the Java compiled files and then these are linked into a bi-

nary file that can be uploaded into the board. Programmers can use the Java

compiler of their choice to compile their programs, but the linking is achieved

through the Dallas tools.

It is very difficult to use as a platform for teaching physical interaction design.

The SIMM and the board are quite big and expensive even before the user’s cir-

cuitry is added for creating a prototype, but no doubt they are very interesting

hardware for advanced or very specific purposes.

I received the Parallax JaveStamp also known as Javelin Stamp. As a product

from Parallax, which already has a long experience in the educational and hob-

byist market, it seems closer to the well known Basic Stamp. In fact, it is compat-

ible in terms of pin functionality with the BasicStamp.

I mounted the microcontroller in a board and started to do some programming

on it. The programming environment is available only for Windows, and it is not

free; users buy it and have the right to use it when they purchase the device.

Internally from the development environment it calls for the GNU IBM Jikes Java

compiler; it uses an old version of Jikes because of class files compatibility. I tried

to use newer versions of Jikes and the generated files don’t work with the Paral-

lax linker.

The class files are linked later with the libraries to produce a binary file that can

be downloaded into the microcontroller. The linker is the intellectual property of

Parallax, and it is not open source. Nonetheless I was very interested in this de-

vice and asked its manufacturers for support. They collaborated, and responded

to my inquiries by creating command line tools (separating some commands

from the programming environment) to link and download the program to the

microcontroller.

So after this experiment, I decided to take my chances and do the first attempt

to integrate between the Processing environment, the created API and this mi-

crocontroller, which meant that, users should be able to write their programs

in the familiar Processing environment, using the instructions and commands

proposed for the Wiring language, then compile and download the code to the

microcontroller and, if lucky, see it working by some kind of blinking light.

A few weeks later finally some stable application resulted. It seemed to be work-

ing, and it was very exciting to see what this could be for users if they were able

to write code for their experiments in this way. So this encouraged me to con-

tinue further.

I made no change to the processing interface for this experiment; only chang-

es in the buttons’ functionality were made. The Play button was used to verify

(compile) the user code, and the Export button was used to compile, link and

Parallax Javelin Stamp initial setup

35

40 WIRING . HERNANDO BARRAGAN

download the program into the microcontroller. It also generated an HTML tem-

plate with the user code to be posted on the web that could be edited later to add

images, diagrams, etc.

After the initial Windows support from Parallax, I asked them for the possibility

of having the command line linker and downloader available for Mac and Linux.

(As I write this paper I still don’t have an answer from them.) This first experi-

ment was done without regard for future possibilities of distribution of their pro-

prietary software but more driven by the excitement of doing it. Nonetheless I

have to thank them for their support. They would be interested to support this

kind of project in the near future, but as they are developing their own platforms,

their time frame was too slow for me to use their technology in my research.

Unlike programming the Parallax BasicStamp, the programming for the Javelin

Stamp is more difficult for beginners, regardless of whether it is worth pursuing

to learn to program in Java.

Conclusions after this experiment:

Java programming for the microcontroller is a very interesting option to build

upon. It has the possibility of easily extending the available command set by

programming in Java.

After this experience I continued examining other Java-based microcontrollers,

including devices that seemed to run native Java code. All of them at the very end

use a linker and downloader that usually is property of the manufacturer, which

in all cases is only available for Windows and some with a licensing scheme that

could prevent the future distribution of this project.

For this experiment I built two examples, one a blinking light and the other a

switch input, which are explained in detail in the second experiment, since they

were repeated using a revised version of the Wiring language.

Functions assigned to buttons in the Processing interface

36

Parallax Javelin Stamp press button example

37

42 WIRING . HERNANDO BARRAGAN

3.2. Second Experiment

The next thing I did was to analyze the balancing of the microcontroller ca-

pabilities and the availability of free tools. I analyzed some of the most widely

used microcontrollers, and two families of chips seem promising, ARM-based

microcontrollers and AVR microcontrollers. I choose to work on the ARM micro-

controller for the next experiment. Many companies manufacture ARM based

microcontrollers, among them Phillips and Atmel. Based on their response to my

requests for help, I started with the Atmel ARM version, specifically on the AT91

R40008 microcontroller.

I got the evaluation board, which basically consists of an electronic board with

the microcontroller soldered to it, switches, LEDs, serial ports and I/O pins ready

to be used, so that I could concentrate on the software development rather than

in building an initial electronic circuit for testing.

After building the necessary tools to compile programs for this platform, I start-

ed porting part of the Wiring commands (API) to the specifics of the ARM in the C

and assembler languages, initially the most basic ones. From the previous

This example simply shows how to make an LED (which is basically a light) to

blink (turn on and off) every half a second. The LED is connected to pin number

6 according to the diagram.

int ledPin = 6; // LED connected to pin 6

void setup()

{

 // Nothing for setup

}

void loop()

{

 // Sets the LED on

 pinWrite(ledPin, HIGH);

 // Wait for half a second

 delay(500);

 // Sets the LED off

 pinWrite(ledPin, LOW);

 // Wait for half a second

 delay(500);

}

Atmel ARM Evaluation board

Atmel Inc., 2003

38

Blink LED

39

experiment I changed some of the commands in the API to be coherent with

Processing style and making more sense for the user. After programming the

basic set of instructions, I made a set of examples using the Wiring language. In

the mean time more evaluation boards arrived, among them Microchip PIC, AVR

Atmega128 and samples from other devices.

Example 1: blinking LED

44 WIRING . HERNANDO BARRAGAN

Example 2: LED swing

This example shows in a row of 8 LEDs how to make them light one at a time in a

sequence, giving the impression that the light moves from one to the next. When

it reaches the last one it comes back to the first one.

// which pin is currently used

int which = 0;

// User defined function to turn off all the LED

// connected from pin number 0 to pin number 7

void turn_all_off()

{

 int i;

 for(i=0; i<8; i++)

 {

 pinWrite(i, LOW);

 }

}

void setup()

{

 // Nothing for setup

}

void loop()

{

 // Turn all LED off

 turn_all_off();

 // Set on the actual LED

 pinWrite(which, HIGH);

 delay(200);

 // Move to the next one

 which = which + 1;

 // If reached the last one go back to the first

 if (which >= 8)

 {

 which = 0;

 }

}

Example 3: An LED blinks while the user presses a switch

This example shows how to read a switch which is the most basic input device. It

blinks an LED while the user presses a switch. When the user releases the switch

it turns off the LED.

int direction = 1; // Used for the blinking

int switchPin = 12; // Pin atached to the switch

int ledPin = 6; // LED on pin 6

void setup()

{

 // Sets switch pin as input

 pinMode(switchPin, INPUT);

}

void loop()

{

 // If the switch is pressed blink the LED

 if(pinRead(switchPin) == LOW)

 {

 direction *= -1;

Swing LEDs

40

46 WIRING . HERNANDO BARRAGAN

 // Alternate between on and off the LED

 if (direction == 1)

 pinWrite(ledPin, HIGH);

 else

 pinWrite(ledPin, LOW);

 delay(200);

 }

 // If not pressed, turn off the LED

 else

 {

 pinWrite(ledPin, LOW);

 }

}

Example 4: Controlling a screen-based application running on a PC through

touching an object.

This example shows how an object becomes a very simple interactive device to

control a screen-based application running in a remote PC. Basically the PC is

running a graphic application, which receives input from the serial port. The PCs

serial port is connected to the microcontroller’s serial port. The microcontroller

is waiting for user input and when the user presses the object, it sends a signal

through the serial port causing the PCs running application to react by changing

the shape and movement of basic graphic forms on the screen.

In order for the microcontroller to detect the event of touching, it has connected

a touch sensor to one of the pins. The touch sensor acts a simple switch, which

is turned on when the user touches an electrode and off when the user releases

it, so the electrode is inside the interactive object.

// Touch sensor will be attached to pin 23

int touchSensor = 23;

void setup()

{

 // Starts the serial port with default settings

 beginSerial(9600);

 // Sets touch sensor pin as input

 pinMode(touchSensor, INPUT);

}

void loop()

{

 // If the user touches the object sends a ’1’

 // and waits until he stops touching

 if(pinRead(touchSensor) == HIGH)

 {

 serialWrite(’1’);

 while(pinRead(touchSensor) == HIGH)

 {

Controlling a screen-based application

42

The LED blinks when the

switch is pressed

41

48 WIRING . HERNANDO BARRAGAN

3.3. Third Experiment

The third experiment consists again of porting and testing the existing Wiring

API to the AVR microcontroller, specifically to the atmega128. This microcon-

troller has a very good balance in terms of power, features and price. I received

an evaluation board from BDMICRO. This board provides access to all the fea-

tures of the microcontroller without adding any extra complex devices.

After some time the API was at the same level as the ARM version. After testing

the existing examples, they were made available from the wiring Web site along

with the updated API.

By porting the Wiring API to different microcontrollers, patterns started to

emerge that will help to support the future development of Wiring for other

microcontrollers.

I proceeded to implement the analog to digital conversion, digital to analog (PWM

Pulse width modulation), pulse generation, as well as some basic libraries, like

serial port communication, servo motor, the Liquid Crystal Display (LCD) library,

for generic text displays based on the HD44780 controller.

I received an evaluation board for the FTDI USB chip in order to provide support

for USB serial connection, since the serial port is a disappearing commodity in

the computer market today, especially on laptops. Wiring should support the se-

rial port communication without having to use an external adaptor for it.

FTDI provide drivers for the Microsoft Windows, Mac OSX and Linux operating

systems, which are necessary for the Wiring environment to run on this operat-

ing systems. The chip worked successfully after running some tests.

 delay(500);

 }

 // When the user release the object send a ’0’

 // through the serial port to the PC to indicate the object

 // was released

 serialWrite(’0’);

 }

}

ARM microcontrollers are very powerful devices. In some setups they require

additional peripheral electronics. For the next experiment, I scaled down the

microcontroller to the Atmel AVR microcontrollers family, all of which are still

powerful but less expensive.

BDMICRO MAVRIC-II atmega128 Evaluation Board

BDMICRO, 2003

45

DLP Design USB232M Evaluation board

DLP Design, 2003

44

Atmel STK500 Evaluation board

43

50 WIRING . HERNANDO BARRAGAN

4. Design and Implementation

4.1. Wiring Software

I designed an API, the basic set of commands that are available for users in their

Wiring programs developed for their projects and explorations. Many modifi-

cations have been made since the original language proposal; maintaining the

coherence with Processing and with the concepts that need to be illustrated. As

soon as adjustments are made I developed examples that use the new command

set. By doing such examples, it helps me to detect which makes sense in the ac-

tual set of commands, and quickly make revisions and changes if necessary. This

API is available from the Wiring programming environment.

Structure

; (semicolon)
= (assign)
() (parentheses)
, (comma)
// (comment)
/* */ (multiline comment)
void
setup()
loop()
{} (curly braces)
[] (array access)
. (dot)

Environment

delay()

Data

Primitive
int
float
char
byte
boolean

Control

Relational Operators
> (greater than)
< (less than)
>= (greater than or equal to)
<= (less than or equal to)
== (equality)
!= (inequality)

Iteration
while()
for()

Conditionals
if()
else

Logical operators
|| (logical OR)
&& (logical AND)
! (logical NOT)

Input /Output

Pin Digital I/O
pinMode()
digitalRead()
digitalWrite()

Port Digital I/O
portMode()
portRead()
portWrite()

Pin Analog Input
analogRead()

PWM (Analog) Output
analogWrite()

Terminal Keyboard
keyPressed
key
keyPressed()
keyReleased()

Time & Date
millis()
second()

minute()
hour()
day()
month()
year()

Timing
WTimer
mark()
timerEvent()

Pulse Generation
beginPulse()
endPulse()
pulseFrequency()
pulseRun()
pulseStop()
pulseRunning()
Pulse Input
pulseIn()

Text Output
printMode()
print()

Math

Operators
+ (add)
- (subtract)
* (multiply)
/ (divide)
++ (increment)
-- (decrement)
% (modulo)
+= (add assign)
-= (subtract assign)
- (negation)

abs()
sq()
sqrt()

A set of small prototypical examples is being developed to illustrate the basics

of the media and the available commands of the language. These examples are

available in the Wiring Examples sketchbook distributed with the application

and from the Wiring web site Examples section.

From now on all the API changes and Examples will be directly posted and made

available from the Wiring web site in the Reference section.

Users can create their programs in the Wiring environment editor. The user’s

programs are compiled and then could be downloaded to the Wiring electronics

I/O board.

Once the program is downloaded to the Wiring I/O Board, it is executed on it.

4.2. Wiring Hardware

I designed the Wiring electronics I/O board. This I/O board is based on the Atmel

AVR atmega128 microcontroller, which is a powerful, scalable and cost effective.

The board has available 48 I/O digital pins, 8 Analog Input pins and 6 Analog

Output (PWM) pins. It also has two hardware serial ports, Two-wire Interface pro-

tocol (TWI), In System Programmer (ISP) connector for initial board setup, and

JTAG connector available for specialized debuggers. Some pins have different

functionality and special functions which is made available through the Wiring

pow()
max()
min()
ceil()
floor()
constrain()

Trigonometry
sin()
cos()
tan()
atan2()
radians()
degrees()

Random
random()

Constants

PI (3.14159...)
TWO_PI (6.28318...)
HALF_PI (1.57079...)

Libraries

Libraries extend the basic func-
tionality of Wiring. It is possible to
write your own libraries.

Serial
Supports communication between
Wiring and external hardware via
the serial port.

Servo Motor
Basic servo motor manipulation
library

LCD Display
Basic LCD manipulation library

DC Motor
Basic DC motor manipulation
library.

Network (In progress)
Sending and receiving data over a
net of devices.

more to come...

Initial Wiring API

46

52 WIRING . HERNANDO BARRAGAN

programming environment. Access to the I/O pins is provided through headers.

Depending on the application, it is possible to use different kind of headers with

the Wiring I/O board: male, female or screw. Headers can also be soldered in the

bottom side of the board for special purposes.

The Wiring I/O board can be connected to a computer using any available USB

port. This USB port is used for both downloading the compiled user programs

to the microcontroller, as well as for communicating the Wiring I/O board with

other devices or computers.

The Wiring I/O board can be powered from the host computer’s USB port or from

a generic positive center Direct Current (DC) power supply adapter that provides

from 7 to 15-volt DC. While powered from the USB port, special care has to be

taken since the computer’s USB bus can only power small, low current consump-

tion devices. It is fine for doing small experiments with LEDs, switches or some

sensors, but not to power devices like motors, servo motors, displays, etc. that

have much higher current consumption. If this is the case, an external power

adapter is needed to power the motors or devices attached to the board. Protec-

tion for both the Wiring I/O board and the host computer is provided by means

of a 500mA fuse in the Wiring board. The fuse will break and will have to be

replaced if a problem occurs, but will keep safe the Wiring I/O board and the

user’s computer.

More information regarding these matters will be available on the web site, as well

as connecting a wide range of sensors and actuators to the Wiring I/O board.

Several considerations were taken in the design of the board. Since it is a system

designed for learning and prototype interaction design projects, it provides ac-

cess to all I/O pins. Basic sensors and actuators can be directly connected to the

board, but more complex elements like a motor will require an external driver

for connecting them to the board. What direct functionality to put on the board

was a concern for the design of the I/O board. It’s been observed that using kits

with specific plug-in connectors prevented people to try out other things. By

providing specific connectors some kits were limiting the user to what the mak-

ers thought they would want to do with them. In Wiring, abstractions have been

made in the API; an example of this is the servo motor library. A servo motor

is special kind of motor that can only move 180 degrees, so it can go back and

forth or stay in a specific position. In order to drive a servo motor it is necessary

to send a pulse of a specific length and frequency to the servo motor. Variations

of these parameters will cause the motor to position in a specific angle. This is a

technological solution that is far from being understandable by users. It seems

Servo Motor Library

beginServo()
Starts the servo motor library.

endServo()
Stops the servo motor library.

attachServo()
Creates and attaches a servo motor to an i/o pin.

position()
Gets the servo motor position.

angle()
Sets the servo motor position angle.

Wiring I/O Board

47

Wiring I/O Board headers:

screw, male and female.

48

Standard Servo Motors

49

54 WIRING . HERNANDO BARRAGAN

more natural to think of an angle and set the position of the servo motor by

telling it the desired angle. This abstraction originated the set of commands to

control a servo motor.

Sensors and actuators can be grouped in families depending on their basic func-

tioning or communication protocol. Many sensing technologies are based on the

variation of resistance through a physical phenomenon, like light intensity, heat,

stretch, press, humidity, movement, etc. All these sensors can be read by an ana-

log input pin, and the value read will determine the position, temperature, light,

etc. in the appropriate case.

It is the same with binary sensors or devices where the only possible inputs and

outputs are HIGH or LOW. In the case of switches or touch sensors ON (HIGH) and

OFF (LOW) logic is used. There are sensors like encoders, accelerometers and dis-

tance rangers, which work by generating pulses. The length and frequency of the

Power supply
connector
7-15V

USB
connector

+5v +7-15v

GND

Digital Input/Outputs 0 - 23

Digital Input/Outputs 24 - 39

Analog
Inputs
0 - 7

Analog
(PWM)
Outputs
0 - 5

Power supply
selector USB
or External

pulses determine the value of the measured unit. For instance pulses determine

speed and direction in the case of the rotary encoder, or X and Y acceleration

in the case of the accelerometer. Other sensors work based on communication

protocols (like TWI) can be grouped as well by communication protocol. In these

cases it makes sense to provide commands to support the protocols rather than

the specific sensor when appropriate, and then provide examples that illustrate

the use of them. Nonetheless there are some cases in which a library will be a

better solution to make the language and the use on the sensor or actuator more

understandable for users. The use and the nature of the physical phenomenon

that needs to be measured or generated with a sensor or actuator will determine

this; but still users will learn the basics of electronics and connection of compo-

nents, maybe not at the level of an electronic engineer, but enough to be able to

use generic components as basic interconnection blocks to add functionality or

complement their designs. This stimulates and encourages curiosity and leaves

space for the user’s imagination about how something can be connected and

integrated in their works.

Interactive physical device / installation

W
ir

in
g

I/O
B

o
ar

d

Sensors /
Actuators

Physical World

Wiring I/O Board Map

50

Bend sensor

51

Sharp Ultrasonic Ranger

52

Microswitch

53

Slider potentiometer (variable resistor)

54

Accelerometer

Analog Devices Inc. 2003

55

Rotary Encoder

56

QPROX Touch Sensor

Quantum Research, 2003

57

Tilt Switches

58

Prototyping standalone physical devices or installations

59

Prototyping interaction design projects often require taking very different tech-

nologies and try to put them to work together. From simple standalone or net-

worked interactive objects or devices to prototypes that involve computers or ex-

tra external equipment in complex interactive installations. Wiring is flexible and

powerful enough to satisfy interaction design prototyping needs. The following

diagrams show some physical interaction design prototyping scenarios.

56 WIRING . HERNANDO BARRAGAN

PC Interactive physical device or installation

Software / screen-based
application

W
ir
in

g
I/O

B
o
ar

d

Sensors /
Actuators

Input peripherals
keyboard, Mouse etc.

Output peripherals
Screen, sound system,

printer etc.

Communication systems
Network etc.

Physical World

W
ir

in
g

I/O
B

o
ar

d

Sensors /
Actuators

Physical World

Interactive physical device or installation

W
ir

in
g

I/O
B

o
ar

d

Sensors /
Actuators

Physical World

Interactive physical device or installation

4.3. Wiring Web Site

I designed a web site for Wiring. I started right after the first examples were

working. First I designed a typeface exclusive for the project and its image. The

Wiring typeface includes 2 families, Normal and Dots; the later is used for the

Wiring logo in the web site and the electronics I/O board.

The Wiring and Processing web sites have differences and similarities. This avoids

confusing the user, and better suits the differences in the nature of the content

displayed, especially in the examples section of the web site.

As in the Processing web site, the Cover section will directly display Happenings,

an Exhibition and a few Examples direct links. Also the main navigation bar will

link to all sections of the web site.

Now that the Wiring I/O board has come to reality, new sections will be incor-

porated into the Web site’s architecture. These will include all the information

related to the I/O Board as well as to basic electronics, sensors and actuators

connection, etc.

Prototyping physical devices or installations including PCs and peripherals

60

 Prototyping interconnected physical devices or installations

61

Snapshots of the Wiring web site

62

58 WIRING . HERNANDO BARRAGAN

Example 5: Light serial

Demonstrates how to read data from the serial port. If the data received is an

‘H’ turns ON a light, if it is an ‘L’ turns OFF the light. The data comes from a

computer running a Processing program, it sends an ‘H’ if the mouse is over a

rectangle otherwise it sends an ‘L’.

// light serial

// by BARRAGAN <http://people.interaction-ivrea.it/h.barragan>

char val; // variable to receive data from the serial

port

int ledpin = 12; // LED connected to pin 12

void setup()

{

 pinMode(ledpin, OUTPUT); // pin 12 as OUTPUT

 beginSerial(9600); // initialize serial port

}

void serialEvent()

{

 val = serial; // get data received in val

}

void loop() {

 if(val == ‘H’) // if receive an ‘H’

 {

 digitalWrite(ledpin, HIGH); // turn ON the LED

 } else {

 digitalWrite(ledpin, LOW); // if not turn it OFF

 }

 delay(100); // wait 100ms for next reading

}

/* Processing code

// mouseover serial

// by BARRAGAN <http://people.interaction-ivrea.it/h.barragan>

// Demonstrates how to send data to the Wiring I/O board, in order

to

// turn ON a light if the mouse is over a rectangle and turn it

off

// if the mouse is not.

// created 13 May 2004

void setup()

{

 size(200, 200);

 beginSerial();

 noStroke();

 framerate(10);

}

boolean mouseOverRect()

{

 return ((mouseX >= 50)&&(mouseX <= 150)&&(mouseY >= 50)&(mouseY

<= 150));

}

void loop()

{

 background(#222222);

 if(mouseOverRect())

 {

 fill(#BBBBB0); // change color

 serialWrite(‘H’); // send an ‘H’ to indicate mouse is

pressed

 } else {

 fill(#666660); // change color

 serialWrite(‘L’); // otherwise send an ‘L’

 }

 rect(50, 50, 100, 100);

}

*/

Controlling a light from

a screen application

63

60 WIRING . HERNANDO BARRAGAN

Example 6: Switch serial

Demonstrates how to send data using the serial port. A computer running a

Processing program receives the data from the serial port and fills a rectangle

according to the value received.

// switch serial

// by BARRAGAN <http://people.interaction-ivrea.it/h.barragan>

int switchpin = 0;

void setup() {

 pinMode(switchpin, INPUT);

 beginSerial(9600);

}

void loop() {

 if(digitalRead(switchpin) == HIGH)

 serialWrite(1);

 else

 serialWrite(0);

 delay(100);

}

/* Processing code

// switch serial

// by BARRAGAN <http://people.interaction-ivrea.it/h.barragan>

// Demonstrates how to read data from the Wiring I/O board, in or-

der

// to fill a rectangle on the screen using a lighter color when a

switch connecter

// to the Wiring I/O board is pressed,

// and fill it with darker color when the switch is released.

// created 13 May 2004

int val;

void setup()

{

 size(200, 200);

 beginSerial();

 noStroke();

}

void serialEvent()

{

 val = serial;

}

void loop()

{

 background(#222222);

 if(val == 0)

 fill(#666660);

 else

 fill(#CCCCC0);

 rect(50, 50, 100, 100);

}

*/

Controlling a screen application

through a switch

64

62 WIRING . HERNANDO BARRAGAN

4.4. First users

I started testing the Wiring I/O board and programming environment with one

of my classmates, Michal Rinott. After doing some of the basic examples, she

developed an example on her own, controlling a servo motor position using a

slider variable resistor.

We employed the technique of “think aloud” in order for me to understand her

path and direction while doing the examples, to give me insights about the pro-

cess she follows.

My experience with Wiring was short but pleasant. My previous experience with

coding for electronics was with the BasicX environment and looking over the

shoulders of people using the JAL environment. The Wiring environment was very

different: it felt simple, clean, aesthetic, non-technical, and not buggy. It seemed

to do what I wanted, without any technical monsters lurking behind the scenes

waiting for my mistakes.

Having used Processing before, I felt comfortable and familiar in the environment.

I was surprised at how intuitive the language was, and at how simple it was to

get things to work—single command lines made things light up! It all felt very di-

rect I was helped a lot—given the exercises and the exact components I needed to

perform them. In this context, and with my prior knowledge, it was quite easy to

do things. I got a line of LED’s running back and forth - that was quite easy - and

then struggled a bit with the border condition: getting the last LED not to “blink”

when the sequence changed direction. It was beautiful to see the “for loop” kind of

behavior visualized before my eyes.

The best exercise was the slider + motor example. It was fun to control a spin-

ning behavior with a sliding—linear motion. It got my imagination running... this

could scratch my back! and then more.

Peeking into a new language, it was interesting to think about the mental mod-

els created by the choice of command terms. The wording would change the way

people think about the underlying function. Should the motor be sent an “Angle”

command or a “Rotation” command? What would my expectations be in each one

of these cases as to what behavior a specific number would invoke? Exciting! (Ri-

nott 2004)

// Controlling a servo position using a slider (variable resistor)

// by Michal Rinott <http://people.interaction-ivrea.it/m.rinott>

int myservo=0; // servo channel 0 to attach a servo.

int servopin=0; // digital pin used to connect the servo

int sliderpin=0; // analog pin used to connect the slider

int sliderValue; // variable to read the value from the analog pin

void setup()

{

 beginServo(); // initializes the servo library

 // attaches the servo number 0 to digital pin 0

 attachServo(myservo, servopin);}

void loop()

{

 // reads the value of the slider (value between 0 and 1024)

 sliderValue = analogRead(sliderpin);

 // scale it ot use it with the servo (value between 0 and 180)

 sliderValue = sliderValue/5.68;

 // sets the servo position according to the scaled value

 angle(myservo, sliderValue);

 delay(15); // waits for the servo to get there

} Michal Rinott testing Wiring

65

Controlling a Servo motor position with a slider variable resistor

Michal Rinott, 2004

66

64 WIRING . HERNANDO BARRAGAN

// Stretch light

// by Karmen Franinovic <http://people.interaction-ivrea.it/

k.franinovic>

// Created 15 May 2004

int val;

void setup()

{

 // nothing for setup

}

void loop()

{

 val = analogRead(0); // read analog input pin 0

 val = (val - 400) * 0.637; // scale value

 val = constrain(val, 0, 255); // constrain value

 analogWrite(0,val); // write value to analaog output 0

 delay(50); // wait 50ms for next reading

}

She successfully finished the slider-servo example and it is posted on the Wiring

web site’s Examples section.

The next user was Karmen Franinovic. She proceeded to do exercises with the

existing Wiring examples, and then she started to prototype controlling a light’s

intensity with a stretch sensor. The stretch sensor is like a rubber band that

changes resistance when it is stretched. It worked successfully and again was

a experience that provided insights on different aspects. She tested some of the

math library functions as well.

Since I had some experience with processing it was easy for me to get into it. The

commands are simple and easy to understand. I would like to see more circuit ex-

amples and of course typical circuits for various sensors and actuators. The experi-

ments can be done very fast: in my example the only little problem encountered

was the scale transformation, but with the minimal knowledge of mathematics

such problems can be easily solved.

I had used BasicX and Basic Stamps, especially on short projects or workshops.

I also used Teleo Makingthings which is easy, but limiting, the thing that I don’t

like of it is that it has no brain! You always need to use the computer attached to

it. With Wiring I can write a program in a familiar environment, similar to pro-

cessing and download it into the processor. This gives me more possibilities, also

Wiring has more input/outputs available, so I can scale my project with no need to

add more modules. I cannot wait to have it outside! (Franinovic 2004)

Karmen Franinovic doing experiments
with Wiring

67

Controlling a light’s intensity with a stretch sensor

Karmen Franinovic, 2004

69

Myriel Milicevic and Maya Lotan doing
experiments with Wiring

68

66 WIRING . HERNANDO BARRAGAN

4.5. Reactive tables (Powered by Wiring)

A set of “reactive tables” that respond to physical actions from the users. These

abstract pieces are the first explorations powered by Wiring. In each piece, the

interaction is mediated through the same physical object, the light cube, and the

response is created on the table surface, a combination of form and interaction.

Each light cube is identical except for the interaction principle it embodies. One

interaction principle per table: press and release, inclination and rotation of the

light cube. The tables respond accordingly by changing the graphic patterns on

their surface.

Each table is controlled by a Wiring I/O board. Inside each table there is also a PC

computer. Each light cube (one per table) has a different sensor on it. The sensor

in the cube is connected to the Wiring board through the cable that connects the

cube with the table. This cable also powers the light cube.

The Wiring system, checks for the sensor data and sends the appropriate data to

the PC computer through a USB cable. In the PC computer a Processing graphics

application is running, and continuously receives data from the Wiring I/O board.

Reactive Tables

Photograph by Ivan Gasparini

70

Reactive Tables

Photograph by Ivan Gasparini

71

68 WIRING . HERNANDO BARRAGAN

The data is interpreted making the graphics system to react according to the ex-

ternal manipulation of the light cubes and reflected on the tables’ surface.

Exhibited at Milan Triennale, This is Today. L’invasione degli ultracorpi interattivi.

April 15-19 2004

4.6. Prototyping aids

Software programs and libraries to support the interconnection of different tech-

nologies are very easy to identify while prototyping interaction design projects. A

considerable amount of work in this direction has been done at different schools,

making available to students software libraries and applications that allow them

to interface diverse technologies in the daily prototyping of interactive devices.

One that was very common at IDII was the need to transfer information from/to

a physical device to/from a computer, sometimes not only to transfer to/from

one but to many computers in a network.

To fulfill this need I designed an application that allows students to send and

receive data from or to any kind of microcontroller (including the Wiring I/O

board) that is connected to a computer’s serial port, to software applications like

Macromedia Flash to other computers in the network. What this software does

is to open the serial port to communicate with the microcontroller and creates

a network server that transmits this data to any network client that connects to

this server. Macromedia Flash doesn’t have access to the computer’s serial port,

but has access to the network, so in this case users can connect Flash using its

Actionscript language to my interface server, and send and receive data from the

microcontroller. This allows for quick prototyping in certain projects, by combin-

ing the Flash multimedia capabilities with the realm of hardware.

Data can also be received by other software applications or programs developed

in Java, C, or any other language with network connection capabilities.

At the moment this software is being used by students at IDII in a wide variety

of prototypes, at the ITP program at NYU, the Massachusetts College of Art in

Boston and Dublin City University in Ireland.

Reactive Tables

72

Reactive Tables

73

Reactive Tables

74

70 WIRING . HERNANDO BARRAGAN

Soeren Pors’ Fight Suit project was one of the first projects at Interaction Design

Institute Ivrea that used the server to read data from an accelerometer con-

nected to a microcontroller and send it to a prototype application developed in

Macromedia Flash.

Connecting Flash and the microcontroller was the backbone that enabled the de-

velopment of the Fight Suit prototype (www.fightsuit.com). It took a lot of hard

work from Yaniv Steiner to control the accellerometer input, but we ended up with

perfect punch response. The Flash connection opened up a new range of prototyp-

ing possibilities to normal folks like me. (Soeren Pors, 2004)

Networked mode

Single computer mode

4.7 Class support material

Class aid tools are very important in education, not only for communication

purposes but also for the class development, and also as reference for future

generations of students and the community in general.

In collaboration with my friend Mauricio Giraldo, I developed a courseware sys-

tem based on previous courseware experiences at Interaction design Institute

Ivrea and the MIT Media Lab.

By analyzing features available in Casey Reas’ Points & Pixels courseware, DBN

courseware at the Massachusetts Institute of Technology (MIT) Media Lab and

Reed Kram’s courseware for the Controlmania class, we developed a system to

support teachers and students in the daily class activities. Taking what we con-

sidered the most important features of each of these courseware systems, we

combined them into the new one. The courseware system is now part of the

Processing project.

Educators can create, edit, modify and consult all the course components (class-

es, students, problem sets, references, schedule, and syllabus). Students can

post, edit and modify solutions to problem sets, document and present their

work, and visualize their classmates’ solutions to problem sets, thereby facilitat-

ing the learning process.

Solutions to problem sets can include Interactive media files like Processing ap-

plets, Macromedia SWF format files, Apple QuickTime movies, or popular for-

mats for images on the Web, like PNG, GIF, JPEG etc. The solution can also include

text or HTML formatted text, as well as links to other Web sites. The system also

provides the web interface for external people to be able to visualize the class

activities. Solutions can be visualized by student or by problem set, making it

possible to view an individual student’s work or the class solution’s work for a

specific problem.

The graphic layout of the class Web site is completely customizable through CSS

and XHTML. The system includes an initial default layout, and English and Span-

ish language files. More will come as more people use it on their activities.

The first version of this software was available in the summer of 2003 and a new

version is currently available for users to download. It requires a one-time instal-

Prototyping modes in which the server is appropriate

75

Fightsuit prototype

Soeren Pors, 2004

76

http://www.fightsuit.com

72 WIRING . HERNANDO BARRAGAN

lation per server; detailed instructions are available in the courseware web site.

Once the system is installed running, it is possible to create as many courses as

needed. It is built on of open source GNU tools and the code was made available

to the community. At the moment it is being used at the University of Los Andes

in Bogotá, University of California Los Angeles (UCLA), Carnegie Mellon Univer-

sity School of Design, and the Ateneo in Manila. The courseware has also been

used to support Processing workshops.

Snapshots of the Courseware system in use at different schools

77

74 WIRING . HERNANDO BARRAGAN

5. Conclusions and Future Direction

This project has been an incredible design challenge in on every level. From elec-

tronics to visual design, it forced me to execute tasks that required many skills.

In this sense it has been an amazing learning experience.

I found obstacles at every turn; some were challenging problems, others more

like dead ends that forced me to step back and try a different approach.

For my experience, it was very important to keep open to change and alterna-

tives; it is easy to get caught into something that makes us feel comfortable,

specially being in love with technology. In that sense I think my experience as an

artist and designer helped me in achieving some balance and getting alternative

perspectives of the problems involved in this project.

This project is just starting; a considerable amount of work has to be done to

take it further and to the extent I intended. From my thesis work, Wiring is in its

initial stage. Now the tools need to be tuned and perfected through the experi-

ence and use in school environments and by the community in general.

I am very excited and challenged with the work done, and the expected question:

what’s next? Everything! I think. It is also exciting to think of the kind of works

that hopefully people will do with Wiring.

Processing has opened a path for this project, not only in terms of community,

teaching methodologies or technology; however, only the use and experience of

Wiring will give me the necessary insights for improvements.

As was the experience with Processing, I expect that my running of workshops

will help me gain the necessary teaching experience as I more finely tune the

curriculums to achieve the goals of the project.

I devised this project to be used along with Processing to teach in academic en-

vironments; doing the initial learning-to-program steps with Processing, then

moving into learning basic electronics with Wiring and doing things in parallel.

Both will complement each other in taking the user’s design experiences into the

physical world.

The Wiring programming environment will be subject of constant improvements;

that’s the nature of software. At the moment an initial version with the basic

API is released; but major changes in the software will happen in the following

months to reflect the implementation of additional libraries and functionality, as

well as to include development environment improvements done for Processing,

since Processing and Wiring share the programming environment.

Another important feature that will be added for the next release is the support

for some of the lower-end microcontrollers of the Atmel AVR Atmega family, to

satisfy the user’s needs to deploy higher number of prototypes of its designs in a

more cost-effective manner.

Massive amounts of work have to be done in the communication and documen-

tation parts of the project. The Wiring web site will be a constant challenge re-

garding this matter.

The I/O Board hardware is designed to last for a longer period of time without

major changes. The Wiring board is powerful and flexible enough for the actual

and future needs of physical interaction design projects in the coming months.

76 WIRING . HERNANDO BARRAGAN

6. References

diSessa, Andrea A., Edward H. Lay, The Berkeley BOXER Project, February 25 2002,

<http://dewey.soe.berkeley.edu/boxer.html/index.html>

Kay, Alan, Squeakland, May 2004, <http://www.squeakland.org>

Logo Cmputer Systems Inc., Microworlds, May 2004, <http://www.microworlds.

com>

Maeda, John, Tom White, Ben Fry, Jessica Rosenkrantz, Design By Numbers, Aes-

thetics + Computation Group. Design By Numbers website. MIT Media Laboratory

Aesthetics + Computation Group. Cambridge, August 2 2003, <http://dbn.media.

mit.edu>

Reas, Casey, Ben Fry, Processing, MIT Media Laboratory and Interaction Design

Institute Ivrea, May 2004, <http://www.processing.org>

Martin, Fred, Fred’s World, University of Massachusetts LOWEL, Jan 27 2004,

<http://www.cs.uml.edu/~fredm/>

Massachusets Institute of Technology, 6.270 MIT’s Autonomous Robot Design

Competition, 2004, <http://www.mit.edu:8001/courses/6.270/home.html>

Martin, Fred. The Handy Board, handyboard.com, Aug 27 2003, <http://www.

handyboard.com>

MIT Media Laboratory Future of Learning Group, GoGo Board, MIT Media Labora-

tory, April 5 2004, <http://learning.media.mit.edu/projects/gogo>

Galbraith, Megan, Simon Greenwold, Justin Manor, nylon, MIT Media Laboratory,

Aesthetics + Computation Group, 2002, <http://acg.media.mit.edu/projects/ny-

lon>

Galbraith, Megan, megan galbraith master’s thesis, Embedded Systems for Com-

putational Garment Design, 2003, <http://acg.media.mit.edu/people/megan/the-

sis.html>

Stang, Pascal, AVRmini Boards, Santa Clara University, Nov 9 2003, <http://hub-

bard.engr.scu.edu/embedded/avr/avrmini>

Bishop, Durrell, Durrell Bishop, <http://www.durrellbishop.com>

Verplank, Bill, Bill Verplank, <http://www.billverplank.com>

Banzi, Massimo, potemkin.org, <http://www.potemkin.org>

Reas, Casey, GroupC.net / REAS, April 2004, <http://www.groupc.net>

UCLA Design | Media Arts, UCLA Design | Media Arts / SenseLab, April 2004, <

http://dma.ucla.edu/senselab>

O’Sullivan, Dan, Dan O’Sullivan, ITP NYU, May 2004, <http://fargo.itp.tsoa.nyu.

edu/~dano>

Igoe, Tom, Tom Igoe, ITP NYU, May 2004, <http://stage.itp.nyu.edu/~tigoe>

Berzowska, Joanna, Joanna Berzowska, Concordia University, May 2004, <http://

hybrid.concordia.ca/~joey>

Nimoy, Josh, The Work of Josh Nimoy, ITP NYU, March 2004, <http://www.jtnimoy.

com>

Stang, Pascal, SCU Robotics Systems Laboratories, Santa Clara University, April 1

2003, <http://hubbard.engr.scu.edu/embedded>

Lawson, Cynthia, Physical Computing, ITP NYU, 2003, http://stage.itp.tsoa.nyu.

edu/~cl457/pcomp

Co, Elise, elise co, Aesthetics + Computation Group. MIT Media Laboratory, Au-

gust 8 2001, <http://acg.media.mit.edu/people/elise>

Koser, Mikkel, Drawing Machine Project, Interaction Design, Royal College of Art,

May 2003, <http://proce55ing.beyondthree.com/tutorial/drawingmachine>

Van Ooijen, Wouter, Eur van Andel, Mark Gross, Javier Martinez, Craig Franklin,

Jal - Just Another Language, June 4 2003, <http://jal.sourceforge.net>

http://dewey.soe.berkeley.edu/boxer.html/index.html
http://www.squeakland.org/
http://dbn.media.mit.edu
http://dbn.media.mit.edu
http://web.media.mit.edu/~fredm/papers/mb/
http://acg.media.mit.edu/people/megan/thesis.html
http://acg.media.mit.edu/people/megan/thesis.html
http://www.billverplank.com
http://www.potemkin.org/cms/
http://www.groupc.net
http://jal.sourceforge.net

78 WIRING . HERNANDO BARRAGAN

Parallax Inc. Stamps in Class, Parallax Bbasic Stamp, <http://www.parallax.com/

html_pages/edu/index.asp>

Netmedia Inc. BasicX by NetMedia Inc., <http://www.basicx.com>

Microchip, Microchip Technology. Inc Home Page, May 2004, <http://www.micro-

chip.com>

Atmel Corporation, Atmel AVR 8-Bit RISC Homepage, May 2004, <http://www.

atmel.com/products/AVR>

Atmel Corporation, AT91 Arm-based Microcontrollers Homepage, May 2004,

http://www.atmel.com/products/AT91/

Systronix Inc, JStamp™, 2003, <http://www.systronix.com/jstamp>

Maxim/Dallas Semiconductor Corp., TINI: Introducing TINI, 2004, <http://www.

ibutton.com/TINI/index.html>

Rabbit Semiconductor, Rabbit Semiconductor | Microprocessors and Develop-

ment tools for Embedded Control and Communications, 2004, <http://www.rab-

bitsemiconductor.com>

Makingthings LLC, PRODUCTS, 2004, <http://www.makingthings.com/products/

products.htm>

Infusion Systems, Infusion Systems :: I-CubeX, MIDI sensor control for research,

education, art, music, dance and more, 2003, <http://www.infusionsystems.

com>

Pond Electronics, Pond – Embedded Systems Products, 2003, <http://www.pond.

ie/products/index.htm>

MIT Media Laboratory, aesthetics + computation group, MIT media laboratory,

2004, <http://acg.media.mit.edu>

Interactivity Consultants, Physical Interactivity and Interaction Design School

Guide, 2003, <http://www.interactivityconsultants.com/pages/alternate_index-

es/LowF_interactivity_curriculum_education.htm>

Zadeh, Lotfi , BISC Program; Soft Computing The Berkeley Initiative on Soft

Computing, Berkeley University of California, 2003, <http://www.cs.berkeley.

edu/~zadeh>

Mann, Steve, Wearable Computing, University of Toronto, 2003, <http://about.

eyetap.org/library/weekly/aa061500a.shtml>

Verplank, Bill, Physical Interaction Design – Autumn 2002, Interaction Design

Institute Ivrea, 2002, <http://www.interaction-ivrea.it/courses/2002-03/physical-

computing>

Banzi, Massimo, InflatedEgoTeachingPhysicalComputing, Interaction Design

Institute Ivrea, 2003, <http://conncomm.interaction-ivrea.it/zope/inflatedego/

TeachingPhysicalComputing>

Verplank, Bill, Max Mathews, MUSIC 250a / CS377C – HCI Theory and Practice,

Human Computer Interaction Design Stanford University, 2004, <http://ccrma-

www.stanford.edu/courses/250a>

ETH, Swiss Federal Institute of Technology, Wearable Computing Lab : Welcome

to the Wearable Computing Lab, ETH, Swiss Federal Institute of Technology Zur-

ich, Jan 4 2004, <http://www.wearable.ethz.ch>

Seymour, Sabine, fashionable technology, Parsons School of Design Center for

New Design, 2003, <http://a.parsons.edu/~fashiontech>

FSF Europe, FSF Europe – Education – Argumentation, Why give precedence to

Free Software at school?, Free Software Foundation Europe, February 2 2003,

<http://fsfeurope.org/projects/education/argumentation.en.html>

Utterback, Camille, Fang-Yu Lin, Major Studio - Physical Computing, Spring 2002,

Parsons School of Design, 2002, <http://a.parsons.edu/~linf/pc/sp02>

Camarata, Ken, Mark D Gross, Ellen Yi-Luen Do, [dmg . publications . Physical

Computing: A Design Studio that Bridges Art, Science, and Engineering], Wash-

ington University, March 13 2003, <http://dmg.caup.washington.edu/xmlSiteEn-

gine/browsers/stylin/publication134.html>

http://www.parallax.com/html_pages/edu/
http://www.parallax.com/html_pages/edu/
http://www.microchip.com/1010/index.htm
http://www.microchip.com/1010/index.htm
http://www.ibutton.com/TINI/index.html
http://www.ibutton.com/TINI/index.html
http://www.makingthings.com/products/products.htm
http://www.makingthings.com/products/products.htm
http://www.pond.ie/pr
http://www.pond.ie/pr
http://acg.media.mit.edu
http://about.eyetap.org/library/weekly/aa061500a.shtml
http://about.eyetap.org/library/weekly/aa061500a.shtml

80 WIRING . HERNANDO BARRAGAN

Winograd Terry, From Computing Machinery to Interaction Design, Stanford

University Program in Human-Computer Interaction, 1997, <http://hci.stanford.

edu/~winograd/acm97.html>

McCullough, Malcolm, Abstracting Craft: The Practiced Digital Hand, MIT Press,

1998.

Pors, Soeren, Fightsuit, 2004, <http://www.fightsuit.com>

Myers, B., Creating Interaction Techniques by Demonstration, appears in Visual

Programming Environments: Paradigms and Systems, Ed. Ephraim P. Glinert,

1990.

Norman, D. A., Things that make us smart, Addison-Wesley, Reading, MA, 1993.

Maeda, John. Design By Numbers, MIT Press, Cambridge, MA. 1999.

Jones, Joseph L., Flynn Anita M., Seiger Bruce A., Mobile Robots, Ed. A K Peters,

Ltd. 1999.

Kernighan B. W., D. M. Ritchie, The C Programming Language, Prentice-Hall: En-

glewood Cliffs, NJ, 1978. Second edition, 1988

D. Svanaes, Understanding Interactivity. Steps to a Phenomenology of Human-

Computer Interaction, Phd Thesis, Trondheim, 1999.

Atmel Corporation, 8-Bit AVR Microcontroller with 128K Bytes In-System pro-

grammable Flash ATMega128 ATMega128L Preliminary, 2003.

Atmel Corporation, AVR061: “STK500 Communication Protocol”, Application

Note, 2003.

Atmel Corporation, AT91 ARM® Thumb® Microcontrollers, AT91R40008, Sum-

mary, 2003.

Atmel Corporation, AT91 ARM® Thumb® Microcontrollers, AT91R40008, Electri-

cal Characteristics, 2003

Apendix A. Wiring I/O Board
Circuit Schematics

82 WIRING . HERNANDO BARRAGAN

Apendix B. Wiring I/O Board Layout

Colophon

This document was prepared with Adobe InDesign.

The text of this thesis was set on 14 points of lead in eight point Caecilia (1991),

designed by Peter Matthias Noordzij and issued by Linotype in 1991.

The Wiring I/O board circuit was designed and laid out using Cadsoft Eagle Free-

ware Light Edition. <http://www.cadsoft.de>

84

	0. Abstract
	0.1 Problem
	0.2 What is it

	1. Introduction
	1.1. Physical Computing
	1.2. Microcontrollers

	2. Background
	2.1. Learning computer programming
	2.2. Learning and prototyping with electronics
	2.3. Contributions from the industry
	2.4. Contributions from Physical Computing classrooms

	3. Concept development
	3.1. First Experiment
	3.2. Second Experiment
	3.3. Third Experiment

	4. Design and Implementation
	4.1. Wiring Software
	4.2. Wiring Hardware
	4.3. Wiring Web Site
	4.4. First users
	4.5. Reactive tables (Powered by Wiring)
	4.6. Prototyping aids
	4.7 Class support material

	5. Conclusions and Future Direction
	6. References
	Apendix A. Wiring I/O Board Circuit Schematics
	Apendix B. Wiring I/O Board Layout

